Lel₂ob and *Ob₂lel* Cage Complexes Based on $[Co(pn)_3]^{3+}$ (pn = Propane-1,2-diamine): Synthesis, Resolution, and Tentative Identity of Their *Fac* and *Mer* Geometrical Isomers

A. J. (Tony) Hendry,* Kevin J. Naidoo, and David A. Thornton

Department of Inorganic Chemistry, University of Cape Town, Rondebosch 7700, South Africa

Encapsulation of $[Co(R/S-pn)_3]^{3+}$ affords the cobalt(III) sarcophagine(sar)-type complexes with stabilized diamine chelate ring conformations; we describe the synthesis, resolution and tentative identity of the one *fac* and three *mer* geometrical isomers of the *lel₂ob* cages, as well as the subsequent conversion to their *ob₂lel* diastereoisomers.

The ambiguity introduced by the conformational flexibility of the $[M(X)_{2}$ -sar]ⁿ⁺ complexes (Figure 1; X = apical cap substituents, sar = 3,6,10,13,16,19-hexa-azabicylo[6.6.6]eicosane)¹ necessitates formation of cage complexes with stabilized diamine chelate ring conformations.^{2.3} $[Co(R/S-pn)_3]^{3+}$ (pn = propane-1,2-diamine) provides a unique series of twelve enantiomeric pairs (Δ and Λ) of diastereoisomers with parallel and oblique conformational variations (lel_3 , lel_2ob , ob_2lel , and ob_3),⁴ by virtue of the pn methyl substituent favouring an equatorial orientation on the five-membered chelate rings.⁵ A statistical distribution results in three *mer*idional and one *fac*ial geometrical isomers for each of the conformational variants.^{6,7} These *mer* isomers are degenerate for (pseudo-) C_3 symmetry, which provides a statistical predominance of 3 *mer*: 1 *fac* in the *lel*₃ and *ob*₃ systems.

Recently, one of us synthesised and resolved the lel_3 - and ob_3 -[Co(NH₂)₂-pnsar]³⁺ cage diastereoisomers (Figure 2;

Figure 1. $[M(X)_2$ -sar $]^{n+}$ complex.

fac-pnsar = 1,8-diamino-4,12,17-trimethylsar; *mer*-pnsar = 1,8-diamino-4,11,17-trimethylsar).^{8,9} The lel_3 cage isomers have surprisingly different characteristics compared to those of their ob_3 diastereoisomers, but their respective geometrical fac and *mer* isomers have virtually identical properties.⁸ We now report the syntheses of the lel_3 , lel_2ob , and ob_2lel cage complexes in a one-pot reaction from an equilibrium mixture of $[Co(R/S-pn)_3]^{3+}$ substrate $(lel_3 = -36\%, lel_2ob = 42\%, ob_2lel = 18\%$ and $ob_3 = 4\%$)⁷ using formaldehyde/nitromethane under basic conditions,¹ to give a mixture of the $[Co(NO_2)_2-pnsar]^{3+}$ diastereoisomers. After reducing the cap nitro

Figure 2. Interconversion of lel_3 - and ob_3 - $[Co(NH_2)_2$ -pnsar $]^{3+}$ complexes. Fac when A = methyl above and B = H below; Mer when B = methyl below, A = H above (H atoms are excluded for clarity and \bullet = N).

Scheme 1. Top view of the conversion of $\Lambda(S_2R)$ -lel₂ob isomers to their $\Delta(S_2R)$ -ob₂lel diastereoisomers. A = methyl above, B = methyl below.

substituents to amines with Zn/HCl,1 the isomer mixture was initially resolved on an SP Sephadex C-25 cation exchange column using 0.20 м K₂SO₄ eluent; two major front orange bands and one minor back orange band were isolated. The two major bands were further resolved on a one-metre SP Sephadex C-25 column using 0.25 м Na₃PO₄ eluent. The first band ($\sim 23\%$ yield) was resolved into two products and identified by ¹³C n.m.r. as the mer and fac isomers of the lel_3 -[Co(NH₂)₂-pnsar]³⁺ cation.⁸ The second band (~11%) yield) was similarly resolved into four products by continuous recycling on the column. These have been identified as the one fac and three mer lel₂ob isomers, indicative from their composite ¹³C spectral features of the pure lel_3 and ob_3 cages. The four very similar lel_2ob ¹³C spectra each show the expected 17 carbon atoms.[†] The lower yield of the *lel₂ob* cage is due to the increased ob character of the starting substrate. This rationale follows from the fact that lel_3 -[Co(pn)₃]³⁺ encapsulates with $\sim 70\%$ success while the ob_3 substrate fails to form a cage.8

The tentative identification of these lel_2ob isomers has been rationalized by their elution order relative to the elution behaviour of the lel_3 and ob_3 cages. The lel_3 cages elute well ahead of their ob_3 diastereoisomers,⁸ indicative of the more open pseudo- C_2 lel faces which have the protons on the co-ordinated amines better disposed for hydrogen-bonding with counter-ions. Furthermore, in both lel_3 and ob_3 cases the *mer* isomers elute marginally faster than their *fac* partners, indicative of the more accessible faces that eventuate in the respective *mer* situations. Hence the slowest moving lel_2ob isomer (4) must be fac (Scheme 1). The fastest moving isomer (1) must have the open $mer-lel_2$ face, while isomer (3), with the closed $mer-lel_2$ face, eluted more slowly. Isomer (2), with the fac-lel₂ face, co-eluted with (1) for five cycles on the column before a separation became obvious. This identification is further corroborated by the unequal amounts of the *lel₂ob* cage isomers that were formed, despite the probability that the lel_2ob -[Co(pn)₃]³⁺ substrate isomers form in approximately equal amounts under equilibrium conditions.⁷ The yields indicate a pattern of reactivity which is a function of the *lel* and *ob* character of the initial substrate as well as the steric influence of the pn methyl substituents. The fac-lel₂ob isomer (4), with the one trigonal N_3 face crowded by one *ob* and two *lel* methyl substituents, gave the lowest relative yield ($\sim 5\%$). Transposing the ob methyl to the opposite trigonal N₃ face, producing the mer isomer (2) with both the top and bottom faces least hindered, gave the highest relative yield ($\sim 43\%$). The other two intermediate cases, where the *ob* methyl shares an N₃ trigonal face with one of the *lel* methyl substituents, gave intermediate relative yields of isomers (1) (\sim 24%) and $(3) (\sim 28\%).$

The ¹³C n.m.r. spectrum of the third minor band (<1% yield) from the initial reaction indicated that it is mainly a single isomer of ob_2lel cage which has the required composite spectral features of the ob_3 and lel_3 diastereoisomers.[†] This drastic decrease in capping ability is due to the increased ob character of the substrate and an alternative stategy was adopted to synthesise and identify the ob_2lel cage isomers. This involved the same procedure developed for the synthesis of the ob_3 cages.⁸ As the ob_3 substrates did not encapsulate, the ob_3 cages were eventually synthesised by removing Co^{III} from the lel_3 cage complexes in concentrated NaCN and then reinserting a labile form of Co^{III} into the free cage ligand, *via trans*-[Co(py)₄Cl₂]Cl (py = pyridine) in 2-methoxyethanol, effectively isomerizing, for example, the $\Lambda(S_3)$ -lel_3 cage to its $\Lambda(S_3)$ -ob_3 diastereoisomer (Figure 2). We performed this

⁺ ¹³C N.m.r. signals, assigned by APT and DEPT, occur in the following ranges (D₂O with external reference dioxane = δ 67.3): pn-CH₃, *lel* = δ 13.6–14.4, *ob* = δ 12.4–12.7; pn-CH₂, *lel* = δ 60.7–61.9, *ob* = δ 55.2–57.2; pn-CH, *lel* = δ 63.8–65.2, *ob* = δ 57.4–59.3; Cap-CH₂, δ 45.2 (adjacent to *ob* pn-CH₃) to 54.7; Cap quaternary *C*, 55.6–58.2.

interconversion on the three *mer* isomers of the *lel*₂*ob* cages, in effect transforming, for example, the $\Lambda(S_2, R)$ -*lel*₂*ob* cages to their $\Delta(S_2, R)$ -*ob*₂*lel* diastereoisomers in overall conversions of ~10% (Scheme 1). The conversion product from *lel*₂*ob* (1) has the same ¹³C n.m.r. spectrum as that of the *ob*₂*lel* cage (1*) isolated from the original one-pot template synthesis, which is consistent with the reactivity discussed above.

A surprising feature of this cage system occurs in the visible spectral regions. The first visible transition, of ${}^{1}A_{1g} \rightarrow {}^{1}T_{1g}$ origin, occurs at 476 nm ($\epsilon \sim 150 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$) for the lel_3 -[Co(NH₂)₂-pnsar]³⁺ cages and at 450 nm (ε ~85 $dm^3 mol^{-1} cm^{-1}$) for the ob_3 cages. Although one might expect the *lel₂ob* and the *ob₂lel* cages to have transitions at intermediate wavelengths, the lel₂ob transition occurs at 484 nm ($\varepsilon \sim 160 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$) and the *ob_2lel* at 475 nm ($\varepsilon \sim 200$ dm³ mol⁻¹ cm⁻¹), both close to the *lel*₃ values. The respective fac/mer isomerism has minimal effect on these visible transitions. Molecular mechanics calculations show that the ob_3 cages have close to octahedral CoN₆ core symmetry and the shortest Co-N bond lengths,8 and this reflects in the lower extinction coefficient and shorter wavelength. The lel3 cages undergo some trigonal twist (the twist angle, $^{10} \phi \sim 56^{\circ}$) imparting C_3 symmetry to the CoN₆ chromophore. The rise in extinction coefficients for the lel₂ob and ob₂lel cage isomers reflect a further loss of CoN₆ inner co-ordination-sphere symmetry.

We thank the Foundation for Research Development of the Council for Scientific and Industrial Research and the African Explosives and Chemical Industries for financial support.

Received, 11th February 1989; Com. 9/00422J

References

- 1 R. J. Geue, T. W. Hambley, J. M. Harrowfield, A. M. Sargeson, and M. R. Snow, J. Am. Chem. Soc., 1984, 106, 5478.
- 2 I. I. Creaser, R. J. Geue, J. M. Harrowfield, A. J. Herlt, A. M. Sargeson, M. R. Snow, and J. Sprinborg, J. Am. Chem. Soc., 1982, 104, 6016.
- 3 R. J. Geue, M. G. Mc Carthy, and A. M. Sargeson, J. Am. Chem. Soc., 1984, 106, 8282.
- 4 IUPAC Commission on the Nomenclature of Inorganic Chemistry, Inorg. Chem., 1970, 9, 1; 1977, 16, 233.
- 5 E. J. Corey and J. C. Bailar, J. Am. Chem. Soc., 1959, 81, 290.
- 6 F. P. Dwyer, F. L. Garvan, and A. Schulman, J. Am. Chem. Soc., 1959, 81, 290.
- 7 S. E. Harnung, S. Kallesoe, A. M. Sargeson, and C. E. Schaffer, Acta Chem. Scand., 1974, 28, 385.
- 8 A. J. Hendry, Ph.D. Thesis, Australian National University, 1986.
- 9 A. J. Hendry, R. J. Geue, and A. M. Sargeson, J. Chem. Soc., Chem. Commun., submitted for publication.
- 10 P. Comba, A. M. Sargeson, L. M. Engelhardt, J. M. Harrowfield, A. H. White, E. Horn, and M. R. Snow, *Inorg. Chem.*, 1985, 24, 2325.